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The state of stress of a Unite-length, hollow cylinder subJected to an axi- 
symmetric load distributed over its entire surface Is Investigated. The case 
of a relatively thin cylinder is studied. The accuracies of existing applied 
theories are examined using the three-dimensional solution 8s a basis. A 
method of constructing more accurate solutions Is glven. 

1. Solutloar of the homogrneour rquatlona Tor l hollm glindrr. Consl- 

der the axlsymmetric deformation of a hollow, isotropic cylinder bounded by 

coaxial circular cylindrical surfaces having radii R, and Aa and by the 

planes z-2 and 

Fig. 1 

z =- Z (see Flg.1). Initially, assume that the cylinder 

is loaded only on the end faces, TX , In terms of dis- 

placements, the equilibrium equations are (W 

&;+Aw= 0, &--;+Au+=O 

Here 

Consider the solutipns of the homogeneous equations 

of system (l.l), i.e. solutions in the absence of any 

loading on the cylindrical surfaces r - R1 and I), . 

These solutions, which were first obtained In Cl], may 

be found by setting (*) 

u = a (F) dm / dz, w = b (r) n.2 (2) (1.2) 

*) The method described here for constructing solutions to the homogeneous 
equations Is also applicable, with some modifications, to the nonaxisynnetrlc 
case. 
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provided that the function m(z) satisfies the condition 

d%(z) / dz” - $m (2) =- 0 (1.3) 

Here P is a parameter which will be determined In satisfying the bound- 
ary conditions on the cylindrical boundary rz . 

Substituting Equations (1.z) into (1.1) and taking into account (1.31, we 

obtain m (2) 
1 
b” + + b’ -+- w b$_+_ 1._J.2y a’@ + & ; n@j = 0 

m’ (2) b’] = 0 (1.4) 

It is readily seen that the general solution of Equations (1.4) is given 

by a (r) = A,p-"J, - A,rJ, + &p-lY1 --A,rY, 
(1.5) 

b (P) =. - Al‘/, -\-A, 14 (2 - v)J, - EJ,l - 
-J&Y,, + A* 14 (1 -. v> Y, - e-,1 

Here J1 z- J, (E), J,, == *IO (g) and Y, L== Y, (g), Y, = Y, ([), are Bessel 
functions; 5 - ur ; while At (t = 1, 2, 3, 4) are constants. In order that 
the solution (1.5) be deflned for ~1 - 0 as well, set AS- A3*$. Knowing 

a(P), b(r) and m(r) , we tax 

the stresses Uz, (Trl00 and 

u = m’ (2) il; ( 

w=m(z){-A,J,-+-A,[4(1 

find the displacements u and w as well as 

'TV:; thus 

A,Ji - -MJ, + -43Y, - =I&Y,I (1.6) 

4) I,-- FrJ11- M,+ “14 14 (I- y> Y,-- EYlII 

The constants Al through AI are found from the boundary conditions 

0, (I?,, 2) = 0, Ttrr(Rlr 2;) = 0, br (I?%, 2) = 0, TV&, 2) = 0 on I+s (1.8) 

Substituting the expressions for 0, and T, from (1.7) into (1.81, We 

obtain a system of linear algebraic equations in AIt Aa, As * and A+ . Thus 

system will have a nontrivial solution If the determinant of the coefficients 
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vanishes. 
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This results in the following characteristic equation In )1 : 

A(P) = P{[L2 + w--1)1 &” + 2(v-I)IL,~” + ,y~~2~~,,2 + 

+ [El” i- 2 (y - I)] Ez” J&2 + I&” + 2 (Y - I)] E12L01* - 
- 4 (Y - 1) - &’ - &‘} = 0 (1.9) 

tLjkcJj(41) y,(E2)-J~(k2) ‘jf~I), tl=/ll?I, $,a =pR2) 

The transcendental equation (1.9) determines a countable set of parameters 

Uk J together with the corresponding constants Alk. Azk,A3k and A4k the 

algebraic interrelationship among which Is thus dependent on the character- 

istic determinant. 

The first set of constants may then be written as 

Al = {[Ez + 2 (y - 1) 52-l] y1 (E2) El-&l - 2 (y - 1) &I + E2Y, 6) w,,- 

- 2 (y - 1) Lo1 + 2 (y - 1) LEz-’ Y” (El) + [E2 + 2 (Y - 1) E2-‘1 Y, (El)} Q 

A2 =- IbE2 + 2(Y-1)E2-11 Yl(Ez)Ll+ E2Y,(E2)Ll,--E,E2-‘Y,(E1)}sz (1.10) 

A3 = - iIE2 + 2 (y - 1) E2-‘I Jl (E2) E&,1 - 2 (v - 1) Lll] + E2J” (E2) [EJ,, - 

- 2 (y - 1) h,l + 2 (y - 1) !d2-lJ,, (Ed + E2 + 2 (Y - 1) E2-‘1 J1 (&)I Q 

& = - {[E2 + 2 (y - 1) WI JI (Ez)L1+ EzJ, (E2) b,, - M2-‘J, (El)} Q 

Here, R Is a certain normalizing factor, and the Index k has been omlt- 

ted. 

2. Anal~mlm of the sootr o? thr ohar~otrsl&tlo l qU8tiOn. Let us examine 

the behavior of the roots of Equation (1.9) when R,dR), . For convenience, 

we Introduce a new parameter y = w1 and set E = (Ra-R1)/R1, whereupon 

Equation (1.9) takes the form 

P&-2@ (r, 8) = r2R1-2 {[r2 + 2 (Y - I)] [r2 (1 + E)2 + 2 (Y - I)] LH2 + 

+ r4 (1 + E)2&I: + IT2 + 2 (v - I>1 r2 (1 + E)%: + 

+ [T2 (1 + E)2 + 2 (v - I)] r2Lo12 - 4 (Y - 1) - T2 - y2 (1 + e)“} = 0 (2.1) 

It Is Immediately clear that yO- 0 Is a double root of Equation (2.1). 

We will now prove that all remaining roots ~~4 - (k = 1, 2, . ..) when 

c-o. The proof Is obtained by contradiction. Assume lnltlally that 

Yk -+ yr* # 00 when 6 --+ 0. Then, In the llmlt 8 (Vk, E) --* e28, (JQ*), 

where 8, (n*) 1s Independent of E . Thus, the limit values of the set of 

roots Y* as c - 0 are defined by Equation 0, (yk*) = 0. In the case 
under consideration, 8, (yr*) = 4 (Y2 - I), so that the aaeumptlon with 
regard to the existence of bounded roots la untenable. 

Let us define more precisely the way In which the roots yr go to - as 

e-0. L&J nr-ovr. Then, In principle, as o 4 0 the following llmlt 
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relations sre possible: 11 aL- 0 , 2) at- const , 3) ar- - . As prevl- 
ously shownA yr- - when o - 0 , so that, by utlllzlng the asymptotic expres- 

sions for the Bes&L functions, Equation (2.1) may be written as 

(2.2) 

% the first Cam? mentioned above, aL- 0 when E -. 0 . Making use of 

this property of small ar and E , Equation (2.2) may be written as 

~a~1-'.&-"(~-'/3c(~4 + 2/46clk* + * * -f + E2[4(Va--- ~)-4/3ct~2(Ys - 1) f 

+ '/9,~ur"(16~2 + 8v- 23)+~~~]+e3[-4(va-~)+,4/,a~z(v2-l)- 

-1/soak4(16v2+8v-23)f . ..I+ ...I =.O (2.3) 
From Equation (2.3), we obtain the asymptotic expsnslon 

8x=~O~+e~,k+ea~zk+ +.., ~o~4-12(v2-1)=0 (2.4) 

?-xk = ;(I -v’)&- $TOk 
0 (2.5) 

rak = g--+&v+ 

Now let us examlne the second case, or- aoil when E - 0 . In this case, 

it ia readily seen from (2.2) that uolt satisfies the Equation 

-$ (sin’ uok - aok2) = 0 
%k 

ft is Important to note that Equation (2.6) actually coincides with the 

equation defining the exponents associated with the edge effects in the 

theory of plates given by St.Veneant (2 and 33. Since Equation (2.6) has 

a countable set of roots, Equation (2.2) also has a countable set of roots such 

that yre - const ) when E - 0 . A more precise evaluation of the roots 

under consideration may be obtained by means of the expansion 

7-8~ _- 
-+ 166,k ’ &k = -681, 

We will show that the third case cannot exist. Indeed, from (2.2) it is 

clear that if c - 0 , It is impossible to satisfy the asymptotic relations 

sinPal,- aLa for aX continuously tendlng to infinity. 

The preceding analysis shows that the characteristic equation (2.1) has 

three groops of roots: 

1) The double root yO= 0 , which is independent of e ; 

2) Four roots yr which are defined by Formulas (2.4) and (2.5) and 

which increase like l//e as E - 0 ; 

3) A cowtable set of roots defined by Equations (2.7) and (2.8) and 
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Increasing like b as c - 0 . 

3. Awlyllr of thr rtatr of rtrrrr and drformatlon oorrrrpondlng to raoh 
group of rootr. G r o u p (I) . Corresponding to the double root yO= 0, 

we have 
a(r) = - vr, b(r) = 1 (3.1) 

The displacements and stresses are given by 

u=-RR1 

az = 2GA,, 6, = 0, Qg = 0, Trz = 0 (3.3) 

Here, p and C are nondimensional coordinateb, and G Is the shear 

modulus. Thus, the first group of roots yO= 0 corresponds to pure exten- 

sion In the direction of the axis of symmetry. This state of stress Is pro- 

pagated without attenuation into the interior region of the shell. 

Group (2). The function m,(z) is obtained from Equation 

mkn -_k8/ Rlsmk = 0 (Tk=6hf VC) 
where 6, is as given In (2.4). Whence, 

(3.4) 

where E, and N, are constants of integration which are determined from the 

boundary conditions on the end faces rl . 

02 (rv 4 = 021 h1p 7 no + (Jzz (Y2P 7 Ya5) 

or (r1 4 = %(YlP 9 r15) + (Jr2 h2p 7 Y,S) 

00 (J-7 4 = (Jo1 (YIP, no -I- (Jez (Y2PI Y&J (3.6) 
‘Grr (TV 4 = 'trz1 (YIP, Y15) + Trzz (yzp, r,5) 

In Expressions (3.5) and (3.6), the quantifies uk, wk, (Jzk, urkv UOk 

and 'trlk, I.e. the displacements and stresses corresponding to the root of 

the second group yr , are obtained from (1.6), (1.7), (1.10) and (3.4) upon 
setting 

P=rk/&, fi=rkf% tl=+fk, &a=rk(l+a), Q=rk"/fi 

The summation is carried out over those roots vr for which Rely,)> 0 . 
Expanding the solutions for the second group for small values of e , we 

obtain the following asymptotic expressions: 

(3.7) 
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Here, the new coordinate rO is measured from the mlddlt: $1.zface. Its 

relationship to P is given by 

P = 1 + l/,8 (1 + 1.&J, --I<r0<1 (3.14) 

From Expressions (3.7) to (3.X3), it can be seen that, when E is small, 

%3 @,k and us* are of the order of unity; wy and ?,,* are of order $6 , 

while urt is of order E . 

Thus, the solutions corresponding to the second group of roots represent 

edge effects which decrease towards the interior region of the shell like 

exp(- c~~~/JE), where n is the distance from the end face rl measured along 

the normal to the face. 

To clarify the pattern of the stress distribution which corresponds to 

the group of roots under consideration, we will determine the stress result- 

ant and moment resultant due to the stresses at a section C = const 
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from which we obtain 

(3.15) 

j-.&d ; ‘-G[ yls (t.’ --- 1) + 1/6*(“1;2 (3 - y)] +. . l . } # 0 

Thus, TX and W, are of order EJE, and c', respectively. Hence it Is 

possible, with the aid of the foregoing computations, to'remove the stress 

resultant and moment resultant due to a given system of stresses by appro- 

priately loading the end faces, i.e. we can obtain 

Ii, J{* 

s 
r,.g-dr = 0, \ g,Pdr = 0 

II, h, 

G r o u p (3). The fin&ion m,(r) must be such that 

where nP is as given In (2.7) and (2.8). Thus, 

nxP (z) = R, [E,* exp (~-ll;Ap) + IV,* exp (- e-‘f;Ap)l (3.16) 

The displacements and stresses are obtained here by means of Formulas 

(1.6), (1.7), (1.10) and (3.16) In which yP Is the corresponding root In 

the third group for which Re[y,] > 0 and G = vp . The states of stress 

corresponding to the third group of roots represent edge effects which de- 

crease towards the interior of the shell like exppf- e"n5,). Fxpanding the 

solutions of thls group in powers of the small parameter E , we obtain the 

following asymptotic axpressions: 

mp (z) = R1 
[ 
mp* + hp5 $,$ + e2 (mp * $82,’ + &Qic 3&+. . .] 

mp'(z) = +[----- 'z* + &&mp*+ 
(3.17) 

P 

mp* = Ep+eXP f Np*e-‘P , 

(3.18) 

csgp = 2Grn,'(~)(6~~8 + e,lpea +- - s), cr,, = 2Gm,'(z)(a,tg + arlpeP+***) 
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Qe1p = * ! -sin 2Jop (1 + rl) + zrl + (v _ 1) fy.!!x + + s*- 5 + TX) - 
OP W 

-4((v- 1)2 1 i 
sin 3Sop 

sin&$, + -- T2- 26,,(~ -f-Q) i- &- (3.19) 
OP 

_ 2 (v _ 1)’ sin %, +(+f)j_ g23- ~-26,,-~o~r~)~os8,,r~ s*p2 

Here rl is a new coordinate, measured from the inner cylindrical surface 

p = 1 + 871 (0% h < 1) (3.20) 

From (3.17) to (3.19) we note that the displ., nents y and w, are of 

order c and the stresses (Trpt zrzp, (%p and \-:p are of the order of 

unity. 

If we refer back to the coordinate rO , measured from the middle surface, 

mop and T,=,~ will be even functions while wOp, o,opr Ue,, and OFOP will 

be odd functions of rO when 

f-41 doP = Sirl60, (3.21) 

On the other hand, uSp and T,,,. will be OZ ’ functions while mop, 

a 7‘OPf %.P and CT,,~ will be even functions of r, when 

(U) 6,, -== - sinho, (3.22) 

Prom the above, we find that the roots Or = 2 (Uer / 8 -i- CI‘& + . . .), 
for which the relations (sin 20,,-- 20,~) / (.T~~~=O, hold, correspond to 
solutions representing primarily shell bending, whereas roots 

WI’ = 2 (6&p I 8 .+-- it)@? -;- . . .), for which 

(sin SOP -t 2o,,f 

hold, correspond to solutions representing 

of the sell. Thus, we have 

for group (A) 

the relations 

/w*p = 0, 

primarily extensional deformations 
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zzop = - 2 (Y - 1) aOpT cos 50, cos 5opr0 - sin sop Cos 6op7’0 + T-0 Siri 50pf0 COS cion 

2uoP = 2 sin deprO (cos 50~ - Go, sin GoP) - Zros0, cm chPro COS 6o~i -I- 

+ 4 (v -.- 1) Sin C&Jo GOs 00~ 

$OP = - 2 sin aopro cos aoP- 2aOB sin czoPro sin oop-2rg0p cos G~PO COSQO~ (3.23) 

qzoP -- - ksQP2 cos dOprO sin GOP + 460p2f+0 sin 6opFo COs cjop 

%OP = 2roaop cos dOprO cos, GOP - 2sin dopro (cos b0p - 60~ Sin QOP) 

deep = - 4~ sin 6opro cos rsoP 

for group (B) (3.24) 

uoP = 2 (Y - 1) CII~,-~ sin oop sin woPrO -Sin f&go cos wop + TO cos mOpTO sin mop 

mop = 2 cos ooprO (sin 00~ + 00~ cosoop) + ~~o~Ops~n~~~~~ sin @0p + 

+ 4(v-- 1) cos mOprO sin 00~ 

Q zoP = - 2 cos cOOprO sin mop + 2ooP coS wopro cos 00P + 2r0@0P sin wopr0 sin WOP 

z rzop = - $00P2 sin ooPro cos 030~ + 4ooP2ro cos moprO sin 00~ 

6 rOp = - 2rowop sino~pr0SinooP-2cos aOprO (sina0P + @oPCOS~op) 

aOOp = -4veosw0pro sinoo, 

dew let US e&ne the stress resultants and moment resultants at a see- 

tion C = const . Thus (3.25) 

+ (v 
-1) yoP I yyoP / “;> ( 2 )]+ 

OP OP OP 80PS 

+ eb 
f 

sin 2S,n 3cos60p 
&+7-----C- 

sin aoP 

OP 6 OP 
--$-T--+ 

OP 

-t&--- 
3cosSo, 3sin 6,, 4 j)($ZJ!p?__-_T__ 

60pS 6 6op8 SOP" ) 
-L((,_ 

OP 

1y]+ **j 

ft Is apparent from (3.25) that 7, and #, corresponding to the root 0, 

are OS order ca and t’, respectively, whereas those corresponding to the 

root wP are of order 69 and e3, respectively. 

Thus, a given system of stresses at a section C = const can be taken to 
vanish with aceuraciea of Ed and c5 for the stress resultant and moment 

resultant, respectively. 

All of the foregoing provides a basis for the conclusion that the edge 

effects of applied shell theories correspond to the second group of solutdons. 

The third group of solutions represent8 edge effects of the St. Venant type, 
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which are completely absent from the Klrchhoff theory. 

From the preceding Investigations, we may draw some conclusions concerning 
the accuracy of applied shell theories. 

1) The Vlasov theory c43. For axlsymmetrlc deformation 
we obtain the relations 

SW au ah 1 - va 
( 

112 
at” +yal; -czv= Bh R2X CT = ___ 

12R" ' R = 0.5(R1+ R2)j (3.26) 

v~--~~+c~~+(I+c~)Y=--~R~Z 

Here, u is the radial displacement of a point on the middle surface ; 
w is the displacement along the generator ; A’ and Z are the tangential 
and normal components of external loading. 

The corresponding characteristic equation is given by 

(1 - Y2) + s2 (‘112 + VaYT’ + %ar”) + es (- l/l2 --‘/avp - ‘/IS79 + 

+ E4 (%l + ‘is VT%+ ‘/lST”) + . . .= 0 (3.27 

From (x.27), we obtain an expansion of the exponent associated with the 
edge effect for the shell theory under consideration 

rok*- 12 (v2- 1) = 0, 
I v 1 

%k=T%k---Hr,l, (3.28) 

2) The Darevskli theory C51.. The characteristic 
equation In this case is 

12 (1 - v2) y4 + &2 [(4 - 3v2) y4 + 2vya + 

+ ye] + 9 [(3v2 - 4) y4 - 2vye - yq + . . . = 0 (3.29) 

from which we obtain the expansion of the exponent associated with the edge 
effect 

rk=-' 
; 

61,=~ck+E&k+*.** 

1 v I 
ro$ - 12 (v2 - 1) = 0, 71h. = 4 rok 

--- 
2 auk (3.30) 

Comparing Equations (3.28) and (3.30) with the exact expansion (2.4) and 
(2.5)s we find that the first terms coincide, but subsequent terms differ. 
The same conclusion Is obtained for all other cylindrical shell theories. 

Thus, an analysis of existing shell theories shows that they approximate 
the second group type of stress with first order accuracy, but none of them 
can make any claim to second order accuracy, since in none of these theories 
does the second order term coincide with the exact value given In Formulas 
(2.4) and (2.5). 

4. Satlrfrotlon o? thr boundary oondltlonr on thr and troor of the 

oyllndmr urlng the rolutionr to thr homogonaour 8QU&lOII8. We will now study 

In detail the problem of balancing the system of stresses on the end faces 

r 1. Assume that the stresses on the end faces C,-i and C,----l are 

glven by Crlr I& and Ct2, Trz2, respectively. WherLupon It is su?ilcient 

to consider the following cases : 

1) The loading Is symmetric about the plane C - 0 

6 21 = 6 229 z tzl = - f,,2 



2) The loading is antisymmetric about the plane c: = 0 

%I = - Qzz, z rrl = Gz2 
3n the first case, we can set ma= C , mk= sir&y,; ; In the sccond.case, 

we take rnlrP coshy,(; . The development will be confined to the first case, 

since the results with regard to the second case can be obtained from the 

first case by replacing sinhy,c with coshy,c . As a pwliminary step, we 

will obtain the solution corresponding to pure extension in the 5 direction 

The remaining self-equilibrating system of normal stresses will be desig- 

(4.3 

(4.3) 

(4.4) 

Here &, C, and D, are constants to be determined; yr are roots of the 

second group; 0, and u)* are roots of the third group having expansions 

whose first terms are given, respectively, as 

To determine the coefficients B,., C, and I), , we make use of Lagrange's 
principle of virtual displacements, using the above terms as generalized 

displacements. 

In the c*se at hand, the solutions of the homogeneous equations satisfy 

exactly the equilibrium equations and the boundary conditions on re., so 

that the principle of virtual displacements yields: 

R, 

(4.5) 
RX 
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The preceding equation yields an infinite system of linear algebraic 

equations 

ii B,It~kp TP) + ffi Cpr (GE, q4 + 5 41 (ok, tip) = &-T far) (4.6) 

p=1 p=1 p=1 

(k = 1,2, * * ., m) 

$i %l (Ok> %) +'g c,I(wkc $) + j&&+'lk, up)= &T(Ok) 
p=1 p=1 p=1 

(k=i,2, . . . . m) 

It may be shown that this system of linear algebraic equations is asaocl- 

ated with a positive definite potential energy form u , and therefore, for 

physically meaningful conditions, always has a solution. 

We will now investigate the structure of the system under consideration 

for E -I 0 . 

For this purpose, we will expand the coefficients in powers of E . Thus, 
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Here 
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An analysis of the structure of the system for E - 0 leads to the con- 

clusion that the first approximations of each group of coefficients Rat , 

c ot and Dot may be determined Independently od each other, I.e. Rot may be 

found from two equatfons; C,, may be obtained from a countably Infinite 

system of algebraic equations, and D,, may be obtained separately from 

another countably Infinite system 

i (&J&k, rp) 
p=1 

-&Ark)) = 0 (k=1,2) (4.11) 

fj (co*lo(~k, GP) -& To (Ok)) = 0 (k=l,2,...,y (4.12) 
p=1 

% 
(k = 1,2, . . .,w) (4.13) 

p=1 

DopI (ok, up) - $ To bd) = o 

It should be emphasized that the determinations of B,k, C,, and D,, 

Invariably lead to Inversion of matrices associated with Equations (4.11) to 

(4.13). The elements of these matrices are Independent of the type of load- 

ing applied on the end faces rl, so that the Inversion need only be carried 

out once. For a semi-Infinite cylinder, m,- exp(- v,C) , the system of 

equations Is similar to Equations (4.11) to (4.13), but the expressions for 

IO and To are different 

Io(;F+;T) = 32(1 -vy”) (v-1)?3(1 -v2)eq ( - 2;/3 (1 -yz)$=) 

10 (a, QP) = - (a 
320’ o2 ok op 

m+P) oka - a:p)a(Gok - ‘op ) 
[v (%k - GOP>” + 2sok6opl x 

x (c0s260k-cOs2 6Op) exp [- (DOk + aOp> +] 

~o(‘orv OP) = 
3200kaoopa 

e#P) 
-&) 

Oka - @Op a)8(00k- Oop ) 
[v ((“Ok - aOp>2 + 2~Ok~Opl x 

(4.14) 

To (7k) = 

= 5 {bzl* [4 (Y - 1)~ + 2yok2 (Y -1) ro] + 4(+-l) %drOk) exp (- 7Ok &) drO 

-1 
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TO (ok) = 1; [%I* WOk(@Ok)- z?zluOk ((J)Ok)2@Ok]exp (- 2%k$) dr0 

It should be noted that Equations (4.12) and (4.13), using the, definitions 

given In (4.14) and (4.15) arise In plate theory; they may be :olvr,d by 

truncation. Equations (4.12) are associated with bending, whercar, Kcj,uations 

(4.13) are associated with the extension of a plate. 

5. Waulo 
"i[ 

of rtrrrrrr on the o~llmlrlo~l boundmy rurfroer. Conrtruo- 
tlon of lmprovr thoorlrr. So far we have Investigated the homogeneous equa- 
tions. However, the approach used in Section 1 permits the construction of 
a SdUtion If the cylindrical surface Is loaded as well, provided that the 
load Is expandable in a Fourier series. To illustrate thin approach, we will 
find the solution corresponding to the kth harmonic of the external load and 
satisfying the following boundary condltlons: 

(I, (R,, z) = 2CA cos kc, T,.~(R~, z) = 2GB sin X-5 

(J, (Rz, z) = 2GC cos kc, z,,(R,, z) = 2GD sin kc 
(5.1) 

This problem Is of an auxilllary character; Its solution may be written in 
the form 

(R, /R,)y26j (r, E) u = (API@, y, s) +BP, (P, YY s) + cp3(~~ Y? cl + 

+ DP, (p, y, E)) CoS k5 (5.2) 

(R, /R,) y28 (y, 8) w = (AQ, (p, y, E) + BQ, h 1’9 ~1 + CQz by Yv 4 + 

+ DQ4 (P, Y, &)I sin k5 (5.3) 

where v=tk, 0 is defined in (2.1) and 

Pi = A,iJl(yp)- A2iTpJO(Tp) + '3,'l(yP)- '*irPYo (YP) (5.4) 

Qi=- A,$o (yp) + A,, [4 (1 - v) Jo (-lp) - TP Jl(Y !. 

- A,iY, (yp)+ Aai [4(1 - v)yo (yp) - TP~~!Y?'! (5.5) 

The quantities ALI are obtained from Equations (5.4) to (5.7). Setting 
51= ? 9 5a= rl(l + e) , we obtain 

-41, = Y8 {I%?4 + 2 (v - 1) %,-‘I Yl (%a) /%1LJ, - 2 (v - 1) JLII + EJ, (%a) I%&, - 

-2(v- 1) Lll + 2 (v - 1) %l%*-lycl (%I) + [%!z + 2 (v - 1) %2-l] YI (%I)} (5.6) 

A21 = Y’ iI%n + 2 (v - 1) %,-'I Y, (E2) 41 + %,Yo (%2):&, - %1%2-'Ye (WI 

-43, = - V"(IE%2 + 2 (v- 1) %,-‘I J, (En) I%&1 - 2 (v - 1) -cl,1 + %BJB (W [El&l - 

- 2 (v - 1) 4,l + 2 (v - 1) %1%2_lJ8 (%I) + [%a + 2 (V - 1) %a-‘1 JI (%3) 

4, = - ~?[%a + 2 (v - 1) %?-‘I J, (%a) J& + %PJO (Ed 4, - %~%n-‘Jo (%I)) 

-412 = Y3W1(%*) I%2 + 2 (v - 1) %2-l] IW 
+ E&l,1 + 2 @ - 1) ; 

- 1) Lo1 + E1JLl + %,Y, (%a) w - 1) J&o + 

Yl(%J I%1 + (3 - 1) El_‘1 - E2Yr (Ed + %2%1-lYl(%J) 

A22 = YS VI (%a) I%* + 2 @ - 1) %a-‘1 (%1-'&l -w + %,Yo (%a) (%I-'Jh, --Lao) - 

- %,-lY1 (53 I%1 + 2 (v - 1) R-11 -%a-‘Yo (El)) 
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A, = - YJ CJl(52) I&2 + 2 (v - 1) %a-‘1 IW - 1) LJl + %1W + Ed, (%,I [%A0 + 
+(2v-1)L,l+2@- 1) Es-’ J, (%I) [%I + (2v - 1) %1-l] - EJ. (&3+&~%1-‘J1 (WI 

A,, = - ys CJI (Ez) [Ee + 2 (v - 1) %*-II (%I-‘& - hn) + %pJ. (Ed (%I-‘&, - bo) - 
- %z-lJ~ (51) I%1 + 2 b’ - 1) %I-‘] - %a-‘Jo (%31 

A, = ys {I%1 + 2 (v - 1) %I-‘lY1 (W P (v - l)Ll - %&l,l + %1Yo(%J x 

x I2 (v - i)L,,- %2LJ + 2 (v - 1) %*%,-'Y" (%?I -I- I%* + ?. 6 - 1) El_'1 Yl(%JI 

As,= -ys{[%1+20'-- 1) %1-l] 1’1(51) L, + %,I’, (51) -bl + %2%l-1yo (%a)1 

&s = - y3 {I& + 2 (v - 1) %1-l] J, (El) 12 6 - 1) L,, - %&ml + 61Jo (%I) X 
x [2 (v - 1) L,1 - %6x,1 + 2 (v - 1) %I-‘%zJ, (Ez) + 151 + 2 (v - 1) El-‘1 JI (%,)I 

A,, = ys’{[%l + 2 (v - 1) El-‘1 J, (%I)-&, + %,J, (%I) La + %z%~-‘Jo (%a)1 

A14 = - y3 WI (Ed [El + 2 (v - 1) El_‘1 IW - 1) &I + %aM + %lYO (%I) x 

x [(By - 1) LJ, + %2LIll - 2 (v - 1) %,-ly, (%,I I%2 + (2v - 1) %2-‘I + 

+ %lYO (E2) - bEo-’ Yl (%,)I 

A,‘ = y2 {Yl (El) [El + 2 (v - 1) El-‘1 Wl, - %2-W + ElYO (El) woo - &2-*&d - 

- %,-‘Y, (%2) LE, + 2 (v - 1) %a-‘1 - %1-'Yo (E2)) 

As = y3 {JI (%I) [%I + 2 (v - 1) El-‘1 I@ - ~)L, + %aLl + %lJo (%I) [%,&I~ + 
+ (2~ - 1) -hoI - 2 W - 1) %I-lJ, (%A [%a +:W - 1) %2-l] + %IJO (Es) - &%a-‘51 (Es)) 

A,, = - ys {J, (%I) 1%~ + 2 b - 1) %I-‘] W, - %2-W + %lJo (%I) &,o - %,-1h,~) - 
- %I-‘J, (%2) I%2 + 2 (v - 1) Es-'] -%I-‘Jo (%a)} (5.7) 

The exact solution thus obtained will be used to evaluate the accuracy of 
applied theorlea. Suppose that we are lntereated In some characterlstlc of 
the preceding solution. For example, auppoae that we are interested In the 
behavior of u and to on the middle surface 
tlve thlcknesa of the ahell e - 0 . 

r - 0.5(R + R,) when the rela- 

8, P, and Q$ In power series of c . 
To determine this behavior, we expand 
Retaining term6 u to a given power 

of c In both the left and right aides of Equationa (5.2 P and (5.3), we @in, 
for the given loading on the cyllndrlcal boundary surface, obtain relations 
of the form 

u i A,*(ik)e.*= $: (AP,,(ik)+BP,,(ik)+CP,,(ik)+DP,p(ik))e*cosk< 
p=1 pi1 

N 

10 x AP* (ik) e* = 
p=1 

i WQ,, WI + BQ,, W + CQ,, W) + DQ,, W ep sin K 
(5.8) 

p=l 

where Ap* (ik), P,, (ik) and Qip (ik) are polynomlale In tk . 
The mmller clt' becomes atd the larger we make R 

Equations (5.8) will be. 
the more accurate 

It la readily seen that Equailone (5.8) may be 
obtained if we aemme that u and 10 are found by meane of some shell 
theory which is given by Equations 

5 A,*($)UBP= 5 (P,*(~)~~(R1,2)fP2p(~)~,~(R1,1)f 
p=1 p=1 (5.9) 
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clearly, the smaller ek becomes the more accurate Equations (5.8) and 
(5.9) w.Ql become, where k repreeents the end of the essential part of the 
epeetrum of external. loading. Thus, we have developed a practical approach 
to the construction of applied theories for cylindrical shells. Moreover, 
if more terms are retained in Equations (5.9) we will obtain a more accurate 
theory. Note that the preceding applied theories are Intended only for the 
bal~nclng of stresses on the cylindrical boundary surfaces. 

The balancing of stresses on the end faaes Is accomplished by the method 
PreViOUsly dlecuased in connection with the homogeneous equations. Never- 
theless, the problem arisea concerning the 
eWeeats of the applied theories, 

between the edge 
Equations 

obtalned from the charaaterlstic equation 
and the exact edge effects 

mSn%Wy solution of Equat-ions (5.9) in the 
l?hUa, if we WE?ek a COXI@~- 

folloulng equation in y : 
z~,PL~~&~;, we obtain the 

Plv(r)= AI‘(r) E+c~q*(~)E’-f-... + AN* (r)G'-0 (5.10) 

From Equation (5.10) It Is not difficult to find the first [+#I terms in 
~h&cs expansion of the roota of the second group. The roots of the 

oup nhiah are aseoaiated with the St.Venant edge effects can not be 
determ%ed from Equation (5.10). 

As a specific example of an applied theory based on Equations (5.91, we 
develop the theory for R - 4 . Thus 
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+<e [- d 
4v(v--1)~ 1 I +e2 -2v(v-i)d5 d]+83[;(v-ii),$+;(v-f)$]+ 

+84[+-$ + &p- qd$ + +(v-I)2~]>~r*(R..~)+<eI-4(v-li)l+ 

+ 9 [2 (v - 1) - 2v (v - 1) gJ+e3[-2(v-1)+~ (v-1) $--&v-1)$ + _( 

++(v-i)a&,+84[+$~ +2(v--1)~$v--i)$+ 

7 
+ =(v 

d4 3 da 5 d4 
--I)@ - +v-i)‘dT + ~(V-l)rd~ I) z,,* (Rs, 4 (5.19 

N~~~zhilov~s theory la given In (5.13 
onyable form of Vlasov’s theory, while For comparison, (5.12) gives a c 

{ [ 

d’ 
d 4(x72- 1) e 1 II +e* -4(vs -l)$]+Ez4[-$v$-3$-$~+ 

+ 3 (+ - 1) $1) u = -$ {<e [- 4 (v - 1) $1) G* (RI, z) + <e [- 4v (v - 1) $1 + 

+ea[+(v -l)$]+e4[- +(v--l)$]>k* (hz)} (5.12) 

{ [ 
e8 4(va-~)~]+es[-4(vP--i) $]+e’[-+v $-- +$-+d$+ 

+3(vr- 1) $]}w=$$[<e[l4v(v -l)+]+es[--&(v--1)$]+ 

+e4[+-(v-i)~]>Q(Rhz)+ <e[4(v-i)l+s”[+(v-I)$$. 

+ + (v -I)] + d [ - + (v - I) d$ - $ (v - I)]> ‘crz* (Rl, z)] 

1) $tj]+e’[- +$+~(v~-I)~+]}u= 

4(v--1) $]>q* (RI, z)+ <e ~v(v-~)$J>+rz*(~~. z)} 
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-t [ 
82 4(vz-*)~]+,r[-4(v~-1) $j]+BI[- $$+3(v'--1) $]}w = 

R1 
-55 ~(~[-4v(v--)~]>a~*(R*,s)+ <E[-4(v-1,&l+ 

++ &v -1)$]+~4[~(V-q$]>~,z*(Rt.~)} (5.13) 

It can be seen that (5.11) oolnclde with (5.12) and (5.13) only ln first 
order terms. 

The same conaluslon follows from [7], where approximate differential equa- 
tions for a cyllndrlaal shell have been obtained In a different form. 
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